Generalized Exponential model
![[genexponential_ex1]](genexponential_ex1.bmp)
model
{
for( i in 1 : N )
{
x[i] ~ dgen.exp(alpha, lambda)
}
# Prior distributions of the model parameters
alpha~ dgamma(0.001, 0.001)
lambda~ dgamma(0.001, 0.001)
}
The data given here arose in tests on endurance of deep groove ball bearings.The data are the number of million revolutions before failure for each of the 23 ball bearings in the life test. The data are taken from Lawless (2003, pp. 99).
Lawless, J.F. (2003).
Statistical Models and Methods for Lifetime data, Second edition, John Wiley & Sons, New York.
The MLE’s are alpha = 5.2589; lambda = 0 .0314
Data
list( N=23, x = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40))
Inits for chain 1
list(alpha=4.0, lambda=0.01)
Inits for chain 2
list(alpha=8.0, lambda=0.1)
list(alpha = 5.2589; lambda = 0 .0314)
list(alpha = 5.28348, lambda = 0.0322971)
Results
![[genexponential_ex2]](genexponential_ex2.bmp)
![[genexponential_ex3]](genexponential_ex3.bmp)
![[genexponential_ex4]](genexponential_ex4.bmp)
![[genexponential_ex5]](genexponential_ex5.bmp)
![[genexponential_ex6]](genexponential_ex6.bmp)
Using a slightly modified model
model
{
for( i in 1 : N )
{
x[i] ~ dgen.exp(alpha, lambda)
}
# Prior distributions of the model parameters
alpha~ dunif(0, 25)
lambda~ dunif(0, 0.25)
diffAlpha <- diffLC(alpha)
diffLambda <- diffLC(lambda)
}
Compile 10 chains, monitor alpha, lambda and deviance. Using last iteration to get reults of
alpha = 5.28348, lambda = 0.0322971 and deviance = 225.952.
![[genexponential_ex7]](genexponential_ex7.bmp)
![[genexponential_ex8]](genexponential_ex8.bmp)
![[genexponential_ex9]](genexponential_ex9.bmp)
![[genexponential_ex10]](genexponential_ex10.bmp)
![[genexponential_ex11]](genexponential_ex11.bmp)