Inverse Weibull model
![[inv_weibull_ex1]](inv_weibull_ex1.bmp)
model
{
for( i in 1 : N )
{
x[i] ~ dinv.weib(beta, lambda)
}
#Prior distributions of the model parameters
beta ~ dunif(0, 10)
lambda~ dunif(0, 2)
}
The data set is taken from Murthy et al. (2004, pp. 119).
Murthy, D. N. P., Xie, M., Jiang, R. (2004).
Weibull Models, Wiley-Interscience.
MLE's are beta = 3.888075, lambda = 0.803668
Data
list(N=30,x=c(0.602, 0.603, 0.603, 0.615, 0.652, 0.663, 0.688, 0.705, 0.761, 0.770,
0.868, 0.884, 0.898, 0.901, 0.911, 0.918, 0.935, 0.953, 0.983, 1.009, 1.040,
1.097, 1.097, 1.148, 1.296, 1.343, 1.422, 1.540, 1.555, 1.653))
Inits for chain 1
list(beta=1.0, lambda=0.1)
Inits for chain 2
list(beta=7.0, lambda=1.0)
Results
![[inv_weibull_ex2]](inv_weibull_ex2.bmp)
MAP estimates are
![[inv_weibull_ex3]](inv_weibull_ex3.bmp)