Extended exponential model
(Marshall-Olkin)
model
{
for( i in 1 : N )
{
x[i] ~ dext.exp(alpha, lambda)
}
# Prior distributions of the model parameters
alpha ~ dunif(1, 200)
lambda ~ dunif(0.001, 10)
}
The data set gives 100 observations on breaking stress of carbon fibres, Nichols and Padgett (2006).
Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families.
Biometrika,
84(3), 641-652.
Nichols, M.D. and W.J. Padgett, W.J. (2006). A bootstrap control chart for Weibull percentiles,
Quality and Reliability Engineering International, 22, 141-151.
The MLE’s are alpha =75.67982, ; lambda = 1.67576,
Data
list( N=100, x=c(3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,
4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22,
3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56,
3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92,
1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71,
2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38,
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65))
Inits for chain 1
list(alpha=10.0, lambda=2.0)
Inits for chain 2
list(alpha=5.0, lambda=1.0)
Results
mean median mode sd MC_error val2.5pc val97.5pc start sample ESS
alpha 97.66 91.82 81.29 37.47 0.4723 40.26 182.5 1001 50000 6294
lambda 1.735 1.738 1.768 0.14 0.001818 1.457 1.995 1001 50000 5934
Note that the distribution of alpha is very skewed and that the mode is much closer to the MLE / MAPthan the mean or median.
MAP estimates are
![[ext_exponential_ex2]](ext_exponential_ex2.bmp)