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Background

BUGS is general-purpose Bayesian modelling so�ware that implements Markov chain
Monte Carlo (MCMC).

Started in 1989: ClassicBUGS, then WinBUGS, then OpenBUGS

Ideas from BUGS widely adopted

• JAGS (Plummer, 2017)

• NIMBLE (Valpine et al., 2017)

• Related ideas are used in Stan (Carpenter et al., 2017)

Latest version is MultiBUGS:

• Available to download from https://www.multibugs.org

• _is talk is based on Goudie et al. (?2019)

Plummer, M. (2017). JAGS Version 4.2.0 User Manual.
Valpine, P. de et al. (2017). “Programming with Models: Writing Statistical Algorithms for General Model Structures with NIMBLE”.
Journal of Computational and Graphical Statistics 26, 403–413.
Carpenter, B. et al. (2017). “Stan: A Probabilistic Programming Language”. Journal of Statistical Software 76, 1–32.
Goudie, R. J. B. et al. (?2019). “MultiBUGS: A Parallel Implementation of the BUGS Modelling Framework for Faster Bayesian
Inference”. Journal of Statistical Software. https://arxiv.org/abs/1704.03216.
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Background & motivation

Impossible or extremely time-consuming to use OpenBUGS with a huge amount of data.

• OpenBUGS uses only a
single CPU/core/thread

• Increases in single-thread
performances slowing

• Number of cores available
increasing

Aim: to make the speed-ups of multi-core computation available to applied statisticians
using BUGS for general models, without requiring any knowledge of parallel programming

Note: not aiming to improve mixing properties of the Markov chain, simply to run it faster
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Parallelisation in MultiBUGS

MultiBUGS implements two levels of parallelisation.

Simple approach – run each of multiple, independent MCMC chains on a separate CPU or
core (Bradford and_omas, 1996)

• Useful for assessing convergence e.g. the Brooks-Gelman-Rubin diagnostic

• Burn-in time isn’t shortened

More complicated approach – use multiple CPUs/cores for a single MCMC chain

• Aim to shorten the per-iteration computation time by identifying tasks that can be
calculated in parallel

• MultiBUGS parallelises the following tasks:
1. “Likelihood” computation
2. Sampling of conditionally-independent components

Bradford, R. and Thomas, A. (1996). “Markov Chain Monte Carlo Methods for Family Trees Using a Parallel Processor”. Statistics
and Computing 6, 67–75.

4/17



Selected other parallelisation approaches

1. Speculatively consider sequence of MCMC steps, evaluate each on a separate core.

e.g. Brockwell (2006)

2. Modify Metropolis-Hastings algorithm by proposing a sequence of candidate points
in parallel.

e.g. Calderhead (2014).

3. Run parts of the model on separate cores and then combine

e.g. Scott et al. (2016), Goudie et al. (2019)

Brockwell, A. E. (2006). “Parallel Markov Chain Monte Carlo Simulation by Pre-Fetching”. Journal of Computational and Graphical
Statistics 15, 246–261.
Calderhead, B. (2014). “A General Construction for Parallelizing Metropolis-Hastings Algorithms”. Proceedings of the National
Academy of Sciences of the United States of America 111, 17408–17413.
Scott, S. L. et al. (2016). “Bayes and Big Data: The Consensus Monte Carlo Algorithm”. International Journal of Management Science
and Engineering Management 11, 78–88.
Goudie, R. J. B. et al. (2019). “Joining And Splitting Models with Markov Melding”. Bayesian Analysis 14, 81–109.
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Trivial illustrative example (“seeds”)

A random-eòects logistic regression without outcome ri and covariates X1i and X2i (21
observations)

ri ∼ Bin(pi , ni)

logit(pi) = α0 + α1X1i + α2X2i + α12X1iX2i + βi α0 , α1 , α2 , α12 ∼ N(µα , σ 2
α)

βi ∼ N(µβ , σ
2
β) σβ ∼ Unif(σmin , σmax)

ri

niβi X1i X2i

σβµβ

α0 α1 α2 α12 βi

σβ

α0 α1 α2 α12

σmin σmax

µα σα

i = 1, . . . , 21
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Generic algorithm used by BUGS

At each MCMC iteration, BUGS does the following:

for v in S do

Evaluate the “prior” p(v ∣ pa(v)
for u ∈ ch(v) do

Do something involving p(v ∣ V−v)

end for
etc ...

end for
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Type 1 – Splitting likelihood computation

When a parameter has many children, the likelihood is the product of many terms.

L(v) = ∏
u∈ch(v)

p(u ∣ pa(u))

But, with a partition of the children ch(v) = { ch(1)(v), . . . , ch(C)(v)},

L(v) =

⎡
⎢
⎢
⎢
⎢
⎣

∏
u∈ch(1)(v)

p(u ∣ pa(u))
⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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×

⎡
⎢
⎢
⎢
⎢
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∏
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⎥
⎥
⎦
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× . . . ×
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⎢
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⎢
⎢
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u∈ch(C)(v)

p(u ∣ pa(u))
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⎥
⎥
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Core C
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Type 2 – Parallelising sampling of parameters

When a model includes a large number of parameters then computation may be slow in
aggregate, even if sampling of each individual parameter is fast.

But parameters that do not directly depend on each other can be updated simultaneously

More precisely, parameters in a mutually conditionally-independent set W ⊆ S can be
updated simultaneously. _at is,W satisfying

all w1 ,w2 ∈W (w1 ≠ w2) satisfy w1 ⊥⊥ w2 ∣ V ∖W

If not all parameters can be collated into a singleW, form a series ofWs and sample in turn.
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Identifying sets W

Deûne the topological depth of a node v ∈ V recursively, starting from the nodes with no
parents.

d(v) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if pa(v) = ∅

1 +maxu∈pa(v) d(u) otherwise
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Which type of parallelism to exploit for each parameter in the model?

MultiBUGS aims to

• Parallelise the evaluation of the “likelihood” of ‘ûxed eòect’-like parameters (Type 1)

• Parallelise sampling of ‘random eòect’-like parameters (Type 2)

Let ch = meanv∈S ∣ ch(v)∣ be the mean number of children across parameters

Heuristic algorithm:
Consider each depth set Dh in turn, starting with the ‘deepest’ set

if a parameter has more than 2 × ch children then
Parallelise evaluation of this parameter’s “likelihood” (Type 1)

else
Sample this parameter in parallel, if possible (Type 2)

end if
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Computation schedule for illustrative example, with 4 cores

_ere are 26 stochastic parameters.

Topological depths:
• d(β1) = ⋅ ⋅ ⋅ = d(β21) = 2

• d(α0) = ⋅ ⋅ ⋅ = d(α12) = d(σβ) = 1

1. Parameters β1 , . . . , β21

Likelihood evaluation not parallelised
these parameter have only 1 child and
ch ≈ 4.8.
But, β1 , . . . , β21 are mutually
conditionally-independent and so
sampling can be parallelised
21 mod 4 ≠ 0 so we will have idle cores

2. Parameters α0 , α1 , α2 , α12 and σβ

All of these parameters have 21 children
ch ≈ 4.8, so likelihood computation is
parallelised
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Implementation notes

Each core keeps
• _e complete DAG, the computation schedule, and associated sampling algorithms
• A copy of the current state of the MCMC
• Two pseudo-random number generation (PRNG) streams

1. “Core-speciûc” stream, initialised with a diòerent seed for each core
Used when we wish to sample independently across cores

2. “Common” stream, initialised using the same seed on all cores.
Used when we wish to obtain the same samples across cores

Most existing code can be reused!

Likelihood parallelisation: Just delete the children whose likelihood contribution is
calculated elsewhere. MPI function Allreduce used to aggregate.

For Metropolis-Hastings: the prior, the sampling of new value, and Metropolis test
(redundantly) replicated on every core, using “common” PRNG stream

Sampling parallelisation: Just delete the nodes that are sampled elswhere from the list of
nodes to be updated. Sample using “core-speciûc” PRNG stream, and propagate new values
across cores using Allgather .
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Hierarchical regression example

Based on an analysis linked database of methadone prescriptions given to opioid dependent
patients in Scotland (Gao et al., 2016)

425,112 observations, with the following structure:

• Geographic regions (i = 1, . . . , 8)
Containing patients (20410 in total)

Each of whom may have multiple prescriptions

For some measurements patient-level identiûers are available:

yijk =
4

∑
m=1
βm × xmij

°
covariates

+ ui
®

region-
specific
intercept

+ vi
®

region-
specific
slope

× rijk
¯

covariate

+ wij
¯

patient-
level

intercept

+ εijk

For other measurements no patient-level identiûer is available:

zil = λ + ui
®

region-
specific
intercept

+ vi
®

region-
specific
slope

× sil
®

covariate

+ ηil

Gao, L. et al. (2016). “Risk-Factors for Methadone-Specific Deaths in Scotland’s Methadone-Prescription Clients between 2009 and
2013”. Drug and Alcohol Dependence 167, 214–223.
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Timings

In OpenBUGS, running chains 2 for 15,000 iterations takes about 32 hours.

In MultiBUGS:

• Sampling of pairs of random-eòect means and variances parallelised;
• Sampling of person-level random eòects wij parallelised, except for the component
corresponding to the person with the most observations (176 observations)

• _e likelihood computation of all the other parameters in the model is parallelised
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When is MultiBUGS quicker than OpenBUGS?

Independent-chain parallelisation is almost always be advantageous whenever suõcient
cores are available, since no communication across cores is needed.

Within-chain parallelisation will be most useful for models involving parameters with a
large number of likelihood terms and/or a large number of conditionally independent
parameters.

• e.g. many standard regression-type models involving both ûxed and random eòects

For models without these features, the overheads of within-chain parallelisation may
outweigh the gains on some computing hardware.

Note the mixing properties are the same as in OpenBUGS (but the exact samples will diòer
due to diòerent PRNG stream use)
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Outlook

MultiBUGS 1.0 is ûnished – https://www.multibugs.org

MultiBUGS 2.01 uses a more eõcient system for communicating partial models to cores

Released version requires Windows, but we did port MultiBUGS 1.0 to Ubuntu

A compendium of ‘big models’ would be useful

Martyn Plummer is adopting a similar idea in JAGS (using OpenMP)

1https://github.com/MultiBUGS/MultiBUGS
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